Estimation of group action

 with energy constraint Masahito Hayashi arXiv:1209.3463v3Graduate School of Mathematics, Nagoya University
Centre for Quantum Technologies, National University of Singapore

周向
NAGOYA UNIVERSITY

Contents

- Summary of estimation in group covariant family
- Estimation of group action $\mathbb{R}, \mathrm{U}(1), \mathrm{SU}(2)$, and $\mathrm{SO}(3)$ with average energy restriction
- Practical construction of asymptotically optimal estimator
- Application to uncertainty relation
(Robertson type)

Estimation of group action

 Given a projective unitary representation \boldsymbol{f} of \boldsymbol{G} on \mathcal{H}. Input state UnknownUnitary to be estimated
$\rho \longrightarrow \boldsymbol{f (g)} \longrightarrow \boldsymbol{M} \longrightarrow \hat{g}$
$\mathcal{E}=(\rho, M):$ Our operation
$\boldsymbol{R}(\boldsymbol{g}, \hat{\boldsymbol{g}})=\boldsymbol{R}\left(\boldsymbol{e}, \boldsymbol{g}^{-1} \hat{\boldsymbol{g}}\right)=\boldsymbol{R}\left(\boldsymbol{e}, \hat{\boldsymbol{g}} \boldsymbol{g}^{-\mathbf{1}}\right)$:error function Average error when the true parameter is \boldsymbol{g}

$$
\mathcal{D}_{R, g}(\mathcal{E}):=\int_{G} R(g, \hat{g}) \operatorname{Tr} M(d \hat{g}) f(g) \rho f(g)^{*}
$$

Bayesian: $\mathcal{D}_{R, v}(\boldsymbol{M}):=\int_{G} \mathcal{D}_{R, g}(\boldsymbol{M}) \boldsymbol{v}(\boldsymbol{d g})$ prior: \boldsymbol{v} Mini-max: $\quad \mathcal{D}_{R}(M):=\max _{g} \mathcal{D}_{R, g}(M)$

Group covariant measurement

\mathcal{H} :Hilbert space
\boldsymbol{G} :group
\boldsymbol{f} :projective unitary representation
A POVM \boldsymbol{M} taking values in \boldsymbol{G} is called covariant if
$f(g) M(B) f(g)^{*}=M(g B)$
$\mathcal{M}(\boldsymbol{G})$: Set of POVMs taking the values in \boldsymbol{G}
$\mathcal{M}_{\text {cov }}(\boldsymbol{G})$: Set of covariant POVMs taking values in \boldsymbol{G}
$\boldsymbol{M} \in \mathcal{M}(\boldsymbol{G})$ is included in $\mathcal{M}_{\text {cov }}(\boldsymbol{G})$
$\square M(B)=M_{T}(B):=\int_{B} f(g) T f(g)^{*} \mu(d g)$

Group-action-version of quantum Hunt-Stein theorem

Invariant probability measure $\boldsymbol{\mu}$ exists for \boldsymbol{G} when \boldsymbol{G} is compact. Then, the following equations hold.

$$
\begin{aligned}
& \min _{\rho, M \in \mathcal{M}(G)} \mathcal{D}_{R}(\rho, M)=\min _{\rho, M \in \mathcal{M}(G)} \mathcal{D}_{R, \mu}(\rho, M) \\
= & \min _{\rho: \text { pure }, M \in \mathcal{M}_{\mathrm{cov}}(G)} \mathscr{D}_{R}(\rho, M) \\
= & \min _{\rho: \text { pure }, M \in \mathcal{M}_{\mathrm{cov}}(G)} \mathcal{D}_{R, \mu}(\rho, M)
\end{aligned}
$$

The following relation holds even when \boldsymbol{G} is not compact.

$$
\min _{\rho, M \in \mathcal{M}(G)} \mathcal{D}_{R}(\rho, M)=\min _{\rho: \text { pure }, M \in \mathcal{M}_{\text {cov }}(G)} \mathcal{D}_{R}(\rho, M)
$$

Fourier transform and

 inverse Fourier transform on group$\hat{\boldsymbol{G}}$: Set of irreducible unitary representation of \boldsymbol{G}
$L^{2}(\hat{G}):=\bigoplus_{\lambda \in \hat{G}} L^{2}\left(\mathcal{U}_{\lambda}\right)$
$L^{2}\left(\mathcal{U}_{\lambda}\right): \stackrel{i \in \hat{G}}{ }$ Set of HS operators on \mathcal{U}_{λ}
$\mathcal{F}: \boldsymbol{L}^{2}(\boldsymbol{G}) \rightarrow \boldsymbol{L}^{2}(\hat{\boldsymbol{G}})$: Fourier transform
$(F[\phi])_{\lambda}:=\sqrt{d_{\lambda}} \int_{G} f_{\lambda}(g)^{*} \phi(g) \mu(d g)$
$\mathcal{F}^{-1}: L^{2}(\hat{G}) \rightarrow L^{2}(G):$ Inverse Fourier transform

$$
\mathcal{F}^{-1}[A](g):=\sum_{\lambda \in G} \sqrt{d_{\lambda}} \operatorname{Tr}_{\lambda}(g) A_{\lambda}
$$

Optimization with Energy constraint

 via inverse Fourier transform Energy constraint$\operatorname{Tr} \rho \boldsymbol{H} \leq E$
$D_{R}(X):=\int_{G} R(e, \hat{g})\left|F^{-1}[X]\left(\hat{g}^{-1}\right)\right|^{2} \mu(\boldsymbol{d} \hat{g})$
Our target is

$$
\min _{\substack{\rho, M \in \mathcal{M}(G) \\ \operatorname{Tr} \rho H \leq E}} \mathcal{D}_{R}(\rho, M)=\min _{\rho: \operatorname{pure}, M \in \mathcal{M}_{\text {cov }}(G),}^{\operatorname{Tr} \rho H \leq E} \mid \mathcal{D}_{R}(\rho, M)
$$

$$
\begin{aligned}
&= \min _{\left.X \in L_{H, E}^{2}, \hat{G}\right),\|X\|^{2}=1} D_{R}(X) \\
& L_{H, E}^{2}(\hat{G}):=\left\{X \in L^{2}(\hat{G}) \mid\langle X| H|X\rangle \leq E\right\}
\end{aligned}
$$

Example: $\boldsymbol{G}=\mathbb{R} \quad(\hat{\boldsymbol{G}}=\mathbb{R})$

$$
\boldsymbol{R}(\boldsymbol{g}, \hat{g})=(\boldsymbol{g}-\hat{g})^{2}, \quad f(g)|\lambda\rangle=\boldsymbol{e}^{i g \lambda}|\lambda\rangle, \quad H=Q^{2}
$$

$$
\min _{\rho \in S\left(L^{2}(\mathbb{R})\right)} \min _{M \in \mathcal{M}_{\operatorname{cov}}(\mathbb{R})}\left\{D_{R}(\rho, M) \mid \operatorname{Tr} \rho Q^{2} \leq E\right\}
$$

$$
=\min _{\mid \phi \in \in L^{2}(\mathbb{R})}\left\{\left.\int_{\mathbb{R}} \hat{g}^{2}\left|F^{-1}[\phi](\hat{\boldsymbol{g}})\right|^{2} \frac{d \hat{g}}{\sqrt{2 \pi}}\left|\int_{\mathbb{R}} \lambda^{2}\right| \phi(\lambda)\right|^{2} \frac{d \lambda}{\sqrt{2 \pi}} \leq E\right\}
$$

$$
=\min _{|\phi\rangle \in L^{L}(\mathbb{R})}\left\{\langle\phi| Q^{2}|\phi\rangle \mid\langle\phi| P^{2}|\phi\rangle \leq E\right\}=\frac{1}{4 E}
$$

Minimum is attained with

$$
\varphi(\lambda)=e^{-\frac{\lambda^{2}}{4 E^{2}}} / \sqrt{\boldsymbol{E}}
$$

Mathieu Function

Periodic differential operator $P^{2}+2 q \cos 2 Q$

Minimum eigenvalue

Eigen function space
$a_{0}(q)$
$\operatorname{ce}_{0}(\boldsymbol{\theta}, q)$
$L_{\text {p,even }}^{2}\left(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$
$b_{2}(q)$
$\mathbf{s e}_{2}(\theta, q)$
$\left.L_{\text {p,odd }}^{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$
$a_{1}(q)$
$\operatorname{ce}_{1}(\theta, q) \quad L_{\text {ateven }}^{2}\left(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$
$b_{1}(q)$
$\mathrm{se}_{1}(\theta, q)$
$\left.L_{\mathrm{a}, \text { odd }}^{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$

$$
\begin{aligned}
& \text { Estimation of U(1) } \\
& R(g, \hat{g})=1-\cos (g-g), \quad f(g)|k\rangle=e^{i k g}|k\rangle, \\
& \boldsymbol{H}=\sum_{\boldsymbol{k}} \boldsymbol{k}^{2}|\boldsymbol{k}\rangle\langle\boldsymbol{k}| \\
& \min _{s\left(L^{2}(\mathcal{U}(1))\right)} \min _{M \in M_{\text {mor }}^{k}(U(1))}^{k}\left\{D_{R}(\rho, M) \mid \operatorname{Tr} \rho H \leq E\right\} \\
& =\min _{|\phi| \in \sum_{\text {peemin }}(-\pi, \pi) \mid}\left\{\langle\phi| I-\cos Q|\phi\rangle\langle\phi| P^{2}|\phi\rangle \leq E\right\} \\
& =\max _{s>0} \frac{s a_{0}(2 / s)}{4}+1-s E \\
& \text { Optimal input is } \\
& \text { constructed by } \mathbf{c e}_{\mathbf{0}}(\boldsymbol{\theta}, \boldsymbol{q}) \\
& \cong\left\{\begin{array}{cl}
\frac{1}{8 E}-\frac{1}{128 E^{2}} & \text { as } E \rightarrow \infty \\
1-\sqrt{2 E}+\frac{7 \sqrt{2} E^{\frac{3}{2}}}{16} & \text { as } E \rightarrow 0
\end{array}\right.
\end{aligned}
$$

Graphs

$\mathrm{U}(1)$

Estimation of SU(2)

$$
\left.R(g, \hat{g})=1-\frac{1}{2} \chi_{\frac{1}{2}} \hat{g} g^{-1}\right), \quad H=\underset{k=0}{\infty} \frac{k}{2}\left(\frac{k}{2}+1\right) I_{\frac{k}{2}}
$$

Reduce $\mathbf{L}^{2} \mathbf{(S U (} \mathbf{(2))}$) $\boldsymbol{L}_{\mathrm{p}, \text { odd }}^{2}((-\pi, \pi])$

$$
\begin{aligned}
& \min _{\rho \in S\left(L^{2}(S \hat{S U}(2))\right)} \min _{M \in M_{\mathrm{ov}}(\mathrm{SU}(2))}\left\{D_{R}(\rho, M) \mid \operatorname{Tr} \rho H \leq E\right\} \\
& =\min _{|\phi|=\left[L_{\text {podd }}^{\text {Rod }}(1-\pi, \pi]\right)}\left\{\left.\langle\phi| I-\cos \frac{Q}{2}|\phi\rangle \right\rvert\,\langle\phi| P^{2}|\phi\rangle \leq E+\frac{1}{4}\right\} \\
& =\max _{s>0} \frac{s b_{2}(8 / s)}{4}+1-s\left(E+\frac{1}{4}\right) \\
& \cong\left\{\begin{array}{cc}
\frac{9}{32 E}-\frac{7 \cdot 3^{3}}{2^{11} E^{2}} & \text { as } E \rightarrow \infty \\
1-\frac{2}{\sqrt{3}} \sqrt{E}+\frac{5 E^{\frac{3}{2}}}{6 \sqrt{3}} & \text { as } E \rightarrow 0
\end{array}\right. \\
& \text { Optimal input is } \\
& \text { constructed by } \\
& \mathbf{s e}_{\mathbf{2}}(\boldsymbol{\theta}, \boldsymbol{q})
\end{aligned}
$$

Graphs

SU(2)

Factor system

$$
\begin{aligned}
& e^{i \theta\left(g, g^{\prime}\right)}:=f(g) f\left(g^{\prime}\right) f\left(g g^{\prime}\right)^{-1} \\
& \mathcal{L}:=\left\{e^{i \theta\left(g, g^{\prime}\right)}\right\}_{g, g^{\prime}}
\end{aligned}
$$

$\hat{\boldsymbol{G}}[\mathcal{L}]$: Set of projective irreducible representation with the factor system \mathcal{L}

$$
D_{R}(X):=\int_{G} R(e, \hat{g})\left|F_{L}^{-1}[X]\left(\hat{g}^{-1}\right)\right|^{2} \mu(d \hat{g})
$$

$$
\begin{aligned}
& \text { Estimation of } \mathrm{SO}(3) \\
& \boldsymbol{R (\boldsymbol { g } , \hat { \boldsymbol { g } }) = \frac { \mathbf { 1 } } { \mathbf { 2 } } (\mathbf { 3 } - \chi _ { \mathbf { 1 } } (\hat { \boldsymbol { g } } \boldsymbol { g } ^ { - \mathbf { 1 } })) , \quad \boldsymbol { H } = \underset { \boldsymbol { k } = 0 } { \infty } \frac { \boldsymbol { k } } { \mathbf { 2 } } (\frac { \boldsymbol { k } } { \mathbf { 2 } } + \mathbf { 1 }) \boldsymbol { I } _ { \frac { \boldsymbol { k } } { } } ^ { 2 }} \\
& \text { Reduce } L^{2}(\mathbf{S O}(3)) \text { to } L_{\mathrm{a}, \text { odd }}^{2}((-\pi, \pi]) \text { or } \boldsymbol{L}_{\mathrm{p}, \text { odd }}^{2}((-\pi, \pi])
\end{aligned}
$$

$$
\begin{aligned}
& \min _{\rho \in S\left(L^{2}(\mathcal{S O}(3))\right)} \min _{M \in \mathcal{M}_{\text {cov }}(\operatorname{SO}(3))}\left\{D_{R}(\rho, M) \mid \operatorname{Tr} \rho H \leq E\right\} \\
& =\left\{\begin{array}{c}
\min _{\phi \in L_{\mathrm{L}, 0 \mathrm{odd}}}\left\{\langle\phi| I-\cos Q|\phi\rangle \left\lvert\,\langle\phi| P^{2}|\phi\rangle \leq E+\frac{\mathbf{1}}{\mathbf{4}}\right.\right\} \\
\text { Integer case } \\
\min _{\phi \in L_{\mathrm{L}, 0 \mathrm{od}}^{2}}\left\{\langle\phi| I-\cos Q|\phi\rangle \left\lvert\,\langle\phi| P^{2}|\phi\rangle \leq E+\frac{\mathbf{1}}{\mathbf{4}}\right.\right\} \\
\text { Half integer case }
\end{array}\right.
\end{aligned}
$$

Integer case

$$
\begin{aligned}
& \min _{\phi \in L_{\text {modd }}^{2}\{ }\left\{\langle\phi| I-\cos Q|\phi\rangle \left\lvert\,\langle\phi| P^{2}|\phi\rangle \leq E+\frac{1}{4}\right.\right\} \\
& =\max _{s>0} \frac{s a_{1}(2 / s)}{4}+1-s\left(E+\frac{1}{4}\right) \\
& = \begin{cases}\frac{9}{8 E}-\frac{81}{128 E^{2}} & E \rightarrow \infty \\
\frac{3}{2}-\frac{\sqrt{E}}{\sqrt{2}}-\frac{E}{4} & E \rightarrow 0\end{cases}
\end{aligned}
$$

Optimal input is constructed by $\mathbf{C} \mathbf{e}_{\mathbf{1}}(\boldsymbol{\theta}, \boldsymbol{q})$

Half integer case

$$
\begin{aligned}
& \min _{\phi \in I_{\mathrm{L}, 0 \text { dd }}^{2}}\left\{\langle\phi| I-\cos Q|\phi\rangle \left\lvert\,\langle\phi| P^{2}|\phi\rangle \leq E+\frac{1}{4}\right.\right\} \\
& =\max _{s>0} \frac{s b_{2}(2 / s)}{4}+1-s\left(E+\frac{1}{4}\right) \\
& =\left\{\begin{array}{cc}
\frac{9}{8 E}-\frac{81}{128 E^{2}} & E \rightarrow \infty \\
1-\frac{1}{\sqrt{3}}\left(E-\frac{3}{4}\right)^{\frac{1}{2}}+\frac{5}{48 \sqrt{3}}\left(E-\frac{3}{4}\right)^{\frac{3}{2}} & E \rightarrow \frac{3}{4}
\end{array}\right. \\
& \text { Optimal input is constructed by } \operatorname{se}_{2}(\theta, q)
\end{aligned}
$$

Graphs

$\kappa_{\mathrm{SO}(3)}(\mathrm{E}) \& \kappa_{\mathrm{SO}(3),[-1]}(\mathrm{E})$

Thick line expresses the projective case, and Normal line expresses the representation case

Non-compact Example: $\boldsymbol{G}=\mathbb{R}^{2}$

Minimize

$$
\int_{\mathbb{R}^{2}}\left(x^{2}+y^{2}\right)\left|F^{-1}[X]\left(\frac{x+y i}{\sqrt{2}}\right)\right|^{2} d x d y
$$

under

$$
\langle X|\left(Q^{2}+P^{2}\right) \otimes I|X\rangle \leq E
$$

Minimum value: $\frac{1}{2 E}$

How to derive minimum

Fourier transform $F: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}(\mathbb{R}) \otimes L^{2}(\mathbb{R})$ $\mathcal{F}^{-1}(Q \otimes I) \mathcal{F}=P_{2}-\frac{1}{2} Q_{1}, \mathcal{F}^{-1}(P \otimes I) F=-P_{1}-\frac{1}{2} Q_{2}$ Via $\phi=F^{-1}[X]$, minimizing problem is equivalent with Minimize $\langle\phi| Q_{1}{ }^{2}+Q_{2}{ }^{2}|\phi\rangle$
under $\langle\phi|\left(P_{2}-\frac{1}{2} Q_{1}\right)^{2}+\left(-P_{1}-\frac{1}{2} Q_{2}\right)^{2}|\phi\rangle \leq E$
By choosing suitable coordinate, minimizing problem is equivalent with Minimum

Minimize $\langle\phi| Q_{1}{ }^{2}+Q_{2}{ }^{2}|\phi\rangle \quad$ Uncertainty
relation
value
$1 / 2 E$

Practical realization of

 asymptotically optimal estimator$G=\mathrm{U}(\mathbf{1}) \quad \mathcal{H}=\langle\mid \boldsymbol{k}\rangle>, \quad H=\sum \boldsymbol{k}^{2}|\boldsymbol{k}\rangle\langle\boldsymbol{k}|$
Assume that ϕ satisfies $\sum_{k} \boldsymbol{k} \mid\langle\boldsymbol{k}]$ is even function $\left.|\phi\rangle\right|^{2}=\mathbf{0}, ~$

This method attains the optimal performance.

Practical realization of

 asymptotically optimal estimatorG = SU(2)
$\mathcal{H}=\underset{\lambda}{\oplus} \mathcal{H}_{\lambda}$
Assume that the support of $\phi^{\text {c }}$ contains both of integer rep. and half integer rep.

This method attains the optimal performance.

Practical realization of

 asymptotically optimal estimatorG = SO(3)
$\mathcal{H}=\underset{\lambda}{\oplus} \mathcal{H}_{\lambda}$
Assume that the support of $\phi^{\boldsymbol{C}}$ contains only integer rep. or half integer rep.

This method attains the optimal performance.

Implication of these optimal estimators

When we consider the energy constraint, entangled input state and measurement with entangled basis do not enhance the quality of estimation.

$$
\begin{aligned}
& |\phi\rangle \rightarrow U \rightarrow M \rightarrow \theta_{1} \text { MLE } \\
& |\phi\rangle \rightarrow U \rightarrow M \rightarrow \theta_{2} \rightarrow \\
& |\phi\rangle \rightarrow U \rightarrow M \rightarrow \theta_{n}
\end{aligned}
$$

This method attains the optimal performance.

Uncertainty relation on $\boldsymbol{L}_{p}^{2}((-\pi, \pi])$

$$
=L^{2}(\mathbf{U}(\mathbf{1}))=L^{2}\left(S^{1}\right)
$$

$\Delta_{\phi}^{2}(\cos Q, \sin Q):=\Delta_{\phi}^{2} \cos Q+\Delta_{\phi}^{2} \sin Q$ $\min _{\phi \in L_{p}^{2}(-\pi, \pi)}\left\{\Delta_{\phi}^{2}(\cos Q, \sin Q) \mid \Delta_{\phi}^{2} P \leq E\right\}$
$=\max _{s>0} 1-\left(s E-\frac{s a_{0}(2 / s)}{4}\right)^{2}$
The minimum is realized by $\operatorname{ce}_{0}\left(\frac{\theta}{2},-\frac{2}{s_{E}}\right)$
$s_{E}:=\underset{s>0}{\arg \max } 1-\left(s E-\frac{s a_{0}\left(\frac{2}{s}\right)}{4}\right)^{2}$

Uncertainty relation on $\quad \mathbf{L}^{2}(\mathbf{S U (2))}$

$$
g \mapsto\left(x_{0}(g), x_{1}(g), x_{2}(g), x_{3}(g)\right) \in S^{\overline{3}}
$$

$\min _{\phi \in L^{2}(\mathrm{SU}(2))}\left\{\Delta_{\phi}^{2} \overrightarrow{\boldsymbol{Q}} \mid \Delta_{\phi}^{2} \overrightarrow{\boldsymbol{P}} \leq \boldsymbol{E}\right\}$

$$
=\frac{L^{2}}{}\left(\boldsymbol{S}^{3}\right)
$$

$$
\Delta_{\phi}^{2} \overrightarrow{\mathbf{Q}}:=\sum_{j=0}^{3} \Delta_{\phi}^{2} \boldsymbol{Q}_{j}, \Delta_{\phi}^{2} \overrightarrow{\boldsymbol{P}}:=\sum_{j=1}^{3} \Delta_{\phi}^{2} \boldsymbol{P}_{j}
$$

$$
P_{j} \phi:=\left.\frac{d \phi\left(e^{i t \sigma_{j / 2}} g\right)}{d t}\right|_{t=0}
$$

$$
=\max _{s>0} 1-\left(s(E+1 / 4)-s b_{2}\left(\frac{8}{s}\right) / 16\right)^{2}
$$

Function ϕ realizing the minimum is given by using

$$
\operatorname{se}_{2}\left(\frac{\theta}{4},-\frac{8}{s_{E}}\right)
$$

Conclusion

- We have proposed a method with Inverse Fourier transform as a unified approach for estimation of group action
- Using this method, we have derived the optimal estimator with energy constraint in several groups.
- We have shown that entanglement of input and output cannot improve under energy constraint.
- We have applied it to uncertainty relation.

References

- MH arXiv:1209.3463
- A. S. Holevo, Rep. Math. Phys., 16, 385 (1979)
- N.A. Bogomolov, Theor. Prob. Appl., 26, 787 (1982)
- M. Ozawa, Research Reports on Inf. Sci. (1980)
- G. Chiribella, et al, Phys. Rev. Lett. 93, 180503 (2004)
- E. Bagan, M. Baig, R. Munoz-Tapia, Phys. Rev. A 70, 030301(R) (2004)
- MH, Phys. Lett., A 354, 183 (2006)
- H. Imai and MH, New J. Phys. 11, 043034 (2009)
- MH, Progress of Informatics, 8, 81-87 (2011)

